(-)-Quinic Acid in Organic Synthesis. Part 4. ${ }^{1}$ Syntheses of Cyclophellitol and its (1R,6S)-, (2S)-, (1R,2S,6S)-Diastereoisomers

Tony K. M. Shing* and Vincent W.-F. Tai
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong

Cyclophellitol 1 and its ($1 R, 6 S$)-, ($2 S$) -, ($1 R, 2 S, 6 S$)-diastereoisomers 2, 3 and 4 are constructed from quinic acid involving the following key steps: regioselective cyclic sulfate ring opening, regiospecific oxidative elimination and an epoxidation. Diastereoisomers 1, 2, 3 and 4 are characterized as their corresponding tetraacetates 5, 6, 7 and 8.

Cyclophellitol $\{(1 S, 2 R, 3 S, 4 R, 5 R, 6 R)$-5-hydroxymethyl-7-oxa-bicyclo[4.1.0]heptane-2,3,4-triol\} 1 was isolated from the culture filtrates of a mushroom, Phellinus sp., by the Umezawa group in 1989. ${ }^{2}$ The absolute configuration of cyclophellitol 1 was established by X-ray crystallographic analysis which disclosed a fully oxygenated cyclohexane corresponding to a carba analogue of D-glucopyranose. ${ }^{2}$ Cyclophellitol 1 was found to inhibit 50% of the almond β-D-glucosidase activity at a concentration of $0.8 \mu \mathrm{~g} \mathrm{~cm}^{-3}$. ${ }^{2}$ The value is lower than the IC_{50} values \dagger of 1 -deoxynojirimycin ($30 \mu \mathrm{~g} \mathrm{~cm}^{-3}$) and castanospermine ($12 \mu \mathrm{~g} \mathrm{~cm}^{-3}$). Also, it showed no antimicrobial activity and no cytotoxicity on NIH 3T3 cells, Molt-4 cells and P388 cells at $100 \mu \mathrm{~g} \mathrm{~cm}^{-3}$. ${ }^{2,3}$
Structurally, cyclophellitol 1 is a unique pseudopyranose with a β-epoxide moiety. The epoxide, the three hydroxy groups and the hydroxymethyl group in compound 1 have the configuration of β-d-glucose. Since cyclophellitol, a β-dglucosidase inhibitor, has a β-epoxide, the α-epoxide 2 might act as an α-D-glucosidase inhibitor. Along this vein of reasoning, the unnatural diastereoisomeric epoxides 3 and 4, which are structurally related to β-D-mannose and α-D-mannose respectively (Fig. 1) might be inhibitors of the corresponding glycosidases. The syntheses of cyclophellitol 1 and its ($1 R, 6 S$)-, ($2 S$)-, ($1 R, 2 S, 6 S$)-diastereoisomers 2,3 and 4 may help to clarify their mode of action in glycosidase inhibition.
The isolation and first total synthesis of cyclophellitol 1 was achieved by the Japanese group. ${ }^{4,5}$ The synthesis started from an unnatural sugar, l-glucose, and proceeded through an intramolecular nitrile oxide cycloaddition (INOC) to construct the cyclohexane ring as the key step. The other fabrication of cyclophellitol 1 included an enantiospecific synthesis ${ }^{6}$ from L-quebrachitol and a racemic synthesis ${ }^{7}$ from a Diels-Alder adduct. Recently, the $(1 R, 6 S)$ - and ($1 R, 2 S, 6 S$)-diastereoisomers 2 and 4 have been synthesized from d-galactose via the INOC strategy and have been shown to be a specific α-Dglucosidase inhibitor and α-D-mannosidase inhibitor, respectively. ${ }^{5,8}$ As part of our programme on the use of quinic acid 9 as a homochiral precursor in organic synthesis, we have already described enantiospecific syntheses of an antitumour agent COTC \{2-crotonyloxymethyl-($4 R, 5 R, 6 R$)-4,5,6-trihydroxycy-clohex-2-enone $\},{ }^{9}$ pseudo- β-D-fructopyranose, ${ }^{10}$ pseudo- β-Dmannopyranose, ${ }^{10}$ pseudo- α-D-mannopyranose, ${ }^{1}$ and pseudo-α-D-glucopyranose. ${ }^{1}$ Recent work from other research groups employing (-)-quinic acid 9 as the starting material include the synthesis of $1 \alpha, 25$-dihydroxy-19-norvitamin $\mathrm{D}_{3},{ }^{11}$ antibiotic (+)-negamycin, ${ }^{12}$ and the A-ring precursor for daunomycin. ${ }^{13}$ This paper describes in detail the versatility of this approach by facile syntheses of diastereoisomers $1,2,3$ and 4. ${ }^{14}$
\dagger The IC_{50} value reflects the amount of compound required for 50% inhibition of the enzyme under the standard assay conditions.

Our synthetic plan is shown in Fig. 2. The sites to be modified in (-)-quinic acid 9 are $\mathrm{C}-5$ (deoxygenation of the tertiary alcohol and reduction of carboxyl group), C-1, C-6 (intro-

B-D-glucose
α-D-glucose

β-D-mannose
α-D-mannose

$2 \mathrm{R}=\mathrm{H}$
$5 R=A c$
$6 R=A c$

$$
3 R=H
$$

$$
7 R=A c
$$

Fig. 1 Structural relationship between sugars and cyclohexane oxide inhibitors of glycosidases

Fig. 2 Synthetic plan
duction of an epoxide stereoselectively), C-2 (inversion of hydroxy group for compounds 1 and 2), C-3 (inversion of configuration) and C-4 (introduction of a hydroxy group stereoselectively). All the four target compounds share three common stereogenic centres at $\mathrm{C}-3, \mathrm{C}-4$ and $\mathrm{C}-5$, so our synthetic plan was to establish the hydroxy groups at C-3, C-4 and the hydroxymethyl group at $\mathrm{C}-5$ first. Then we would need to address the stereocentre at C-2. Lastly, we would have to fabricate an epoxide moiety between C-1 and C-6 with the correct stereochemistry.

The route to cyclophellitol 1 and its ($1 R, 6 S$)-diastereoisomer $\mathbf{2}$ is illustrated in Scheme 1. The conversion of quinic acid $\mathbf{9}$ into

Scheme 1 Reagents and conditions: i, cyclohexanone, $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$ (cat.) $\left(83 \%\right.$); ii, 5 steps, see ref. 1 ; iii, NaH, THF, $0^{\circ} \mathrm{C}$ then benzyl (Bn) bromide, $\mathrm{Bu}_{4} \mathrm{NI}$ (cat.), reflux, overnight (82%); iv, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., $24 \mathrm{~h}(90 \%)$; v, triethylamine, thionyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad 0^{\circ} \mathrm{C}$; vi, $\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3}$ (cat.), $\mathrm{CCl}_{4}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C} \rightarrow$ room temp., $1 \mathrm{~h}\left(89 \%\right.$); vii, $\mathrm{Bu}_{4} \mathrm{NI}$, THF, reflux, then $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{H}_{2} \mathrm{O}(83 \%)$; viii, $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}\left(\mathrm{Ac}_{2} \mathrm{O}\right)$, pyridine, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 24 h (95%); ix, DBU, xylene, reflux (83%); $\mathrm{x}, \mathrm{NaOMe}$ (cat.), MeOH , room temp. $(95 \%$)
the alcohol 11 followed a modified reaction sequence developed by us. ${ }^{1}$ The lactone $\mathbf{1 0}$ was synthesized previously using Gero's procedure ${ }^{15}$ by boiling a mixture of compound 9 , cyclohexanone, Dowex 50 WX8 resin (H^{+}), DMF and benzene with the azeotropic removal of water. In this work, we followed a simplified protocol developed by Stoodley ${ }^{16}$ for its preparation by boiling compound 9 and cyclohexanone in the presence of a catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$, with the azeotropic removal of water. We found this procedure more convenient and thus the lactone 10 was readily obtained in 83% yield from compound 9 , which was converted into the alcohol 11 in six steps ${ }^{1}$ with an overall yield of 41.6%. Blocking of the hydroxy group in compound 11 with benzyl bromide gave the
benzyl ether $\mathbf{1 2}$ in 82% yield. Hydrolysis of the cyclohexylidene ring in 12 using trifluoroacetic acid (TFA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the diol 13 in 90% yield. According to the Sharpless protocol, ${ }^{17}$ the diol 13 was treated with thionyl chloride in the presence of triethylamine at $0^{\circ} \mathrm{C}$ to give the cyclic sulfite 14 , which was oxidised with catalytic RuO_{4} in $\mathrm{CCl}_{4}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, to give the cyclic sulfate 15 . The cyclic sulfate 15 could be prepared in 89% yield without isolation of the cyclic sulfite 14. The artifice of this reaction lies in the removal of the triethylamine since it was reported that the amine would inactivate the ruthenium catalyst. ${ }^{17}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15 showed two protons deshielded to $\delta 4.91$ and 5.10 , attributable to those attached to the cyclic sulfate moiety. The IR spectrum showed the characteristic $\mathrm{S}=\mathrm{O}$ vibration at $1210 \mathrm{~cm}^{-1}$ and in the mass spectrum, the $\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}$ fragment was observed at m / z 419.

The cyclic sulfate moiety has been described as an epoxide analogue and is readily opened in an $\mathrm{S}_{\mathrm{N}} 2$ manner by a number of nucleophiles such as the azide, benzoate, acetate, hydride, fluoride, etc. ${ }^{18}$ The high reactivity of cyclic sulfates has been attributed to the ring strain, even though the origin of the ring strain is not very clear. In addition to the ring strain, the good leaving ability of the $\mathrm{ROSO}_{3}{ }^{-}$moiety makes the five-membered cyclic sulfate very reactive towards various reagents. ${ }^{18}$

Ring opening of the cyclic sulfate 15 with $\mathrm{Bu}_{4} \mathrm{NI}$ in refluxing THF provided the iodo alcohol 16 in 83% yield, after acidic work-up. The regioselectivity of the initial attack was identified by acetylation of the hydroxy group in compound 16 with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine-4-dimethylaminopyridine (DMAP)- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the iodo acetate 17. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17 showed an apparent triplet at $\delta 5.49$ with coupling constants of $J 3.5 \mathrm{~Hz}$, confirming that the hydroxy group in compound 16 was attached to $\mathrm{C}-2$ and at the axial position. Treatment of the iodo acetate 17 with 1,8 -diazabicy-clo[5.4.0]undec-7-ene (DBU) ${ }^{19}$ in refluxing xylene ${ }^{*}$ afforded the alkene 18 in 83% yield. Methanolysis of the acetate 18 furnished the allylic alcohol 19.

It was envisaged that the $\mathrm{ROSO}_{3}{ }^{-}$moiety after the nucleophilic attack can only be hydrolysed in the presence of acid, ${ }^{17,18,20}$ so treatment of the intermediate 20 (obtained from nucleophilic attack of compound 15 with $\mathrm{Bu}_{4} \mathrm{NI}$) directly with DBU and then with aq. acid gave the desired allylic alcohol 19 in 61% yield (Scheme 2). The cyclic sulfate 15 could also be elaborated to compound 19 by the Sharpless-Reich protocol. ${ }^{21}$ Thus, treatment of the sulfate 15 with the phenyl selenide anion

Scheme 2 Reagents and conditions: i, $\mathrm{Bu}_{4} \mathrm{NI}$, THF, reflux; ii, DBU, xylene, reflux, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$, THF (61%); iii, PhSeNa , EtOH, THF, $0^{\circ} \mathrm{C} \rightarrow$ room temp., $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}(80 \%) ; \mathrm{iv}$, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-40^{\circ} \mathrm{C} \rightarrow$ room temp., then $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}$, toluene, $80^{\circ} \mathrm{C}(72 \%)$

[^0](generated from the hydride reduction of diphenyl diselenide) in tetrahydrofuran (THF) followed by acid hydrolysis formed the trans-diaxial seleno-alcohol 21 as the sole product in 80% yield. The selenoxide produced from the oxidation of compound 21 with meta-chloroperbenzoic acid (MCPBA) at $-70^{\circ} \mathrm{C}$ was treated with diisopropylethylamine (Hünig's base) to give compound 19 in 58% overall yield (Scheme 2). The phenomenon that the syn-elimination occurs away from the hydroxy group appears to be general. ${ }^{21}$ The regioselectivity of the initial attack by the selenide anion was confirmed by the allylic alcohol 19 obtained.

Thus, we have shown three ways of transforming the cyclic sulfate 15 into the allylic alcohol 19. Among the three methods, the second method, i.e., the in situ elimination of the iodide $\mathbf{2 0}$, was the most satisfactory in terms of both the yield and the number of steps involved. Remarkably, the ring opening of the cyclic sulfate 15 by the iodide or by the selenide was highly regioselective. This fact can be rationalized according to the effect of neighbouring polar substituents on the development of the $\mathrm{S}_{\mathrm{N}} 2$ transition state. ${ }^{22}$ As shown in Fig. 3, the transition state 15a arising from nucleophilic attack at $\mathrm{C}-1$ would exert a dipole which is aligned with the existing dipole at $\mathrm{C}-2$, and thus the energy of the transition state would be correspondingly increased. ${ }^{22}$ Nucleophilic attack at C-2 would evoke two such dipole-dipole interactions, which would be influenced by two dipoles at $\mathrm{C}-1$ and $\mathrm{C}-3$, resulting in an even less favourable transition state $\mathbf{1 5 b}$.

The hydroxy group in the allylic alcohol 19 is of opposite stereochemistry to the C-2 hydroxy group in cyclophellitol 1, so our next objective was to invert the hydroxy group in compound 19 by the Mitsunobu reaction. ${ }^{23}$ Treatment of the allylic alcohol 19 with benzoic acid, triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ and diisopropyl azodicarboxylate (DIAD) in toluene at $0^{\circ} \mathrm{C}$ gave the β-benzoate 22 in 93% yield. Epoxidation of the double bond in compound 22 with MCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a mixture of inseparable diastereoisomeric oxiranes 23a and 23b in 66% combined yield (${ }^{1} \mathrm{H}$ NMR, $30: 70$). Debenzoylation of the inseparable oxiranes 23a and 23b with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in anhydrous MeOH gave two epoxy alcohols 24 and 25 in 95% isolated yield with a ratio of $27: 73$, respectively. The assignment of the stereochemistry of 24 and 25 was made by comparison with the major oxirane obtained from the epoxidation of the allylic alcohol 26. Thus, methanolysis of the β-benzoate 22 with NaOMe in anhydrous MeOH afforded compound 26 in 94\% yield which underwent the hydroxy-directed ${ }^{24}$ MCPBA epoxidation to give compounds 24 and 25 in 70% yield, with a ratio of $6: 94$, respectively. The major oxirane should have the epoxide ring syn^{24} to the alcohol and therefore was assigned as the β epoxide 25 . In order to reverse the stereoselectivity of the epoxidation, the hydroxy group in 26 was blocked with the bulky tert-butyldimethyl silyl (TBDMS) group. Treatment of compound 26 with TBDMSCl-imidazole-DMAP in DMF gave the silyl ether 27 in 91% yield. MCPBA Epoxidation of 27 furnished two diastereoisomeric oxiranes 28 and 29 in 72% isolated yield with a respective ratio of $61: 39$ favouring the α oxirane. The assignment of the stereochemistry of the oxiranes was made simply by desilylation of the compounds $\mathbf{2 8}$ and 29

15a
15b
Fig. 3 Transition states for nucleophilic ring opening of compound 15

$22 R=C O P h$ $26 \mathrm{R}=\mathrm{H}$ $27 R=$ TBDMS

$25 \mathrm{R}=\mathrm{H}$ $29 R=$ TBDMS

$23 a+23 b$

$30 R=A c$
$32 \mathrm{R}=\mathrm{H}$
$35 R=$ TBDMS

34
separately with $\mathrm{Bu}_{4} \mathrm{NF}$, affording compounds 24 and 25 respectively in 94% yields. Finally, hydrogenolysis of the antiepoxy alcohol 24 with a catalytic amount of 5% palladium on charcoal in EtOH gave cyclophellitol 1 in 93% yield. The melting point and optical rotation of synthetic 1 were in accord with those reported by the Umezawa group; ${ }^{2}$ m.p. $146-148^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{23}+100\left(c 0.3, \mathrm{H}_{2} \mathrm{O}\right)\left\{\right.$ lit. ${ }^{2}$ m.p. $149-151^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}+103(c$ $\left.\left.0.5, \mathrm{H}_{2} \mathrm{O}\right)\right\}$. Acetylation of cyclophellitol 1 with $\mathrm{Ac}_{2} \mathrm{O}$-pyridineDMAP gave its tetraacetate 5 in 91% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were identical to those reported by the Vogel group 7 for racemic 5, m.p. $105-106^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+100(c 0.2$, CHCl_{3}) (lit., ${ }^{7}$ oil). Similarly, hydrogenolysis of the syn-epoxy alcohol 25 with a catalytic amount of 5% palladium on charcoal in EtOH gave the $(1 R, 6 S)$-diastereoisomer 2 in quantitative yield. The melting point and optical rotation of synthetic 2 were in good agreement with those reported by the Umezawa group; $4^{4,5}$ m.p. ${ }^{155-157}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+83.3\left(c 0.3, \mathrm{H}_{2} \mathrm{O}\right)\left\{\right.$ lit. ${ }^{4,5}$ m.p. $\left.150-152^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+80\left(c 0.4, \mathrm{H}_{2} \mathrm{O}\right)\right\}$. Acetylation of the isomer 2 with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine-DMAP gave its tetraacetate 6 in 83% yield, oil; $[\alpha]_{\mathrm{D}}^{21}+90.4\left(c 0.7, \mathrm{CHCl}_{3}\right)$.

Alternatively, the allyl acetate 18 was used for the synthesis of the $(2 S)$ - and ($1 R, 2 S, 6 S$)-diastereoisomers 3 and 4. MCPBA Epoxidation of the alkene 18 in boiling $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave two oxiranes 30 and 31 in 77% isolated yield, with a respective ratio of 45:55. Methanolysis of the epoxy acetates 30 and 31 separately gave the corresponding epoxy alcohols 32 and 33 in 94% and 91% yield, respectively. The assignment of the stereochemistry of the oxiranes 32 and 33 was established by the hydroxy-directed MCPBA epoxidation ${ }^{24}$ of the allylic alcohol 19, which gave solely the syn-epoxy alcohol 32 in 95% yield.

Using the said strategy, blocking of the hydroxy group in 19 with TBDMSCl gave the silyl ether 34 in 96% yield. MCPBA Epoxidation of compound 34 gave two diastereoisomeric oxiranes 35 and 36 in 67% isolated yield, with a respective ratio of $24: 76$. Their stereochemistries were assigned based upon desilylation and comparison with compounds 32 and 33. Thus the oxiranes 32 and 33 could be obtained from the allylic alcohol 19 in three steps with 14% and 46% overall yield, respectively.

Finally, hydrogenolysis of the syn-epoxy alcohol 32 with a catalytic amount of 5% palladium on charcoal in EtOH gave the ($2 S$)-diastereoisomer 3 in 91% yield, for the first time, m.p. $148-150^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}+7.0\left(c 0.4, \mathrm{H}_{2} \mathrm{O}\right)$. Acetylation of compound 3 with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine-DMAP gave its tetraacetate 7 in 91% yield, m.p. $111.5-113^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-55.3\left(c 0.4, \mathrm{CHCl}_{3}\right)$. Similarly, hydrogenolysis of the anti-epoxy alcohol 33 with a catalytic amount of 5% palladium on charcoal in EtOH gave the ($1 R, 2 S, 6 S$)-diastereoisomer 4 in 89% yield. The melting point and optical rotation of synthetic 4 are compared with those obtained from the Umezawa group; ${ }^{8} 4$, m.p. $129-131^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}$ -39.5 (c 0.9, $\mathrm{H}_{2} \mathrm{O}$) \{lit., ${ }^{8}$ oil; $\left.[\alpha]_{\mathrm{D}}^{25}-76\left(c 0.1, \mathrm{H}_{2} \mathrm{O}\right)\right\}$. Acetylation of compound 4 with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine-DMAP gave the new tetraacetate 8 in 93% yield, m.p. $74-75^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22} 0.0(c$ $0.4, \mathrm{CHCl}_{3}$).
It is noteworthy that the presence of the oxirane moiety in compounds 1 to 8 could be established by ${ }^{13} \mathrm{C}$ NMR spectroscopy; the two carbons bearing the oxirane moiety ($\mathrm{C}-1,6$) in compounds 1 to 4 resonated in the range from $\delta 54.4$ to 58.2 , whereas those in compounds 5 to 8 resonated in the range from $\delta 50.8$ to 54.7.
In conclusion, cyclophellitol 1 and its ($1 R, 6 S$)-diastereoisomer 2 could be synthesized from (-)-quinic acid 9 in 17 steps with 4.5% overall yield and in 15 steps with 8.6% overall yield, respectively. On the other hand, the ($2 S$)- and ($1 S, 2 S, 6 R$)diastereoisomers 3 and 4 could be synthesized from (-)-quinic acid 9 in 13 steps with 12.6% overall yield and in 15 steps with 6.0% overall yield, respectively. Remarkably, the diastereoisomers 2 and 3 could also be obtained stereoselectively by hydroxy-directed MCPBA expoxidation of the allylic alcohols 26 and 19, respectively.

Experimental

M.p.s were measured on a Reichert Microscope apparatus and are uncorrected. A Bruker WM 250 spectrometer was used to obtain ${ }^{1} \mathrm{H}(250 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(62.9 \mathrm{MHz})$ NMR spectra. All spectra were measured on solutions of the compound in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ (TMS) as internal standard, unless otherwise stated. Chemical shifts are reported as parts per million (ppm) using the δ scale. Coupling constants (J) are reported in Hz. IR spectra were recorded on a Nicolet 205 FTIR spectrometer. EI- and CI(isobutane)-mass spectra were recorded on a VG 7070F mass spectrometer. Optical rotations were measured on a Jasco DIP-370 digital polarimeter using chloroform as solvent, unless otherwise stated; $[\alpha]_{\mathrm{D}}$ values are recorded in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Elemental analyses were carried out at either the Shanghai Institute of Organic Chemistry, Academic Sinica, China or at MEDAC Ltd., Department of Chemistry, Brunel Unisversity, Uxbridge, Middlesex UB8 3PM, United Kingdom. All reactions were monitored by thin layer chromatography (TLC) performed on a Merck precoated silica gel $60 \mathrm{~F}_{254}$ plates, and compounds were visualised with a spray ($5 \% \mathrm{w} / \mathrm{v}$ dodecamolybdophosphoric acid in ethanol) and subsequent heating. Flash chromatography was carried out on columns of Merck Keisel gel 60 ($230-400$ mesh). All solvents were reagent grade. Pyridine was distilled from barium oxide and stored in the presence of potassium hydroxide pellets. THF was freshly distilled from Na-benzophenone ketyl under nitrogen. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ Was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over 4 \AA molecular sieves. DMF was distilled over CaH_{2} under reduced pressure and stored over $3 \AA$ molecular sieves under nitrogen.

Cyclophellitol 1.-To a suspension of palladium on charcoal ($60 \mathrm{mg} ; 5 \% \mathrm{w} / \mathrm{w}$) in absolute $\mathrm{EtOH}\left(1.5 \mathrm{~cm}^{3}\right.$) under H_{2} at atmospheric pressure was added a solution of the benzylated compound 24 ($189.3 \mathrm{mg}, 0.424 \mathrm{mmol}$) in absolute EtOH (8
cm^{3}). The suspension was stirred for 2 h at room temp. and filtered through a pad of Celite. The residue was washed with methanol ($30 \mathrm{~cm}^{3}$) and concentration of the filtrate, followed by flash chromatography [chloroform-methanol ($3: 1 \mathrm{v} / \mathrm{v}$)] gave cyclophellitol 1 ($69.4 \mathrm{mg}, 93 \%$) as colourless needles, m.p. $146-$ $\left.148{ }^{\circ} \mathrm{C}(\mathrm{MeOH}),[\text { lit. } .)^{2} 149-151^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] ; R_{\mathrm{f}} 0.32$ [chloro-form-methanol (3:1)] (Found: C, 47.7; H, 6.9. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 47.7 ; \mathrm{H}, 6.9 \%) ;[\alpha]_{\mathrm{D}}^{23}+100\left(c 0.3, \mathrm{H}_{2} \mathrm{O}\right)\left\{\mathrm{lit} .,^{2}[\alpha]_{\mathrm{D}}^{27}\right.$ $\left.+103\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right)\right\} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400$ and $3490(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{DOH}\right.$ at 4.80$) 2.10(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.18-3.26(2 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}$ and $4-\mathrm{H}$), $3.35(1 \mathrm{H}$, dd, $J 8.4$ and $10.0,3-\mathrm{H}$), $3.54(1 \mathrm{H}$, brd, $J 3.6,6-\mathrm{H}), 3.75-3.83(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $8-\mathrm{H})$ and $3.98(1 \mathrm{H}, \mathrm{dd}$, $J 3.8$ and 11.3, $\left.8^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right.$, dioxane $\left.\delta 67.4\right) 44.3,56.8,56.9$, 61.4, 67.8, 71.7 and $77.1 ; m / z(C I) 177\left(\mathrm{MH}^{+}\right)$
(1R,2R,3S,4R,5R,6S)-5-Hydroxymethyl-7-oxabicyclo-[4.1.0]heptane-2,3,4-triol 2.-Similar catalytic hydrogenolysis of the benzylated compound $25(235.5 \mathrm{mg}, 0.528 \mathrm{mmol})$ as above gave, after flash chromatography [chloroform-methanol ($2: 1 \mathrm{v} / \mathrm{v}$)], the ($1 R, 6 S$)-diastereoisomer $2(92.6 \mathrm{mg}, 100 \%$) as colourless needles, m.p. $155-157^{\circ} \mathrm{C}(\mathrm{MeOH}),\left[\right.$ lit., ${ }^{4,5} 150-$ $152{ }^{\circ} \mathrm{C}(\mathrm{MeOH})$]; $R_{\mathrm{f}} 0.32$ [chloroform-methanol ($2: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 47.5; H, 6.9. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 47.7 ; \mathrm{H}, 6.9 \%$); $\left.[\alpha]_{\mathrm{D}}^{23}+83.3\left(c 0.3, \mathrm{H}_{2} \mathrm{O}\right),\{\text { lit. })^{4,5}[\alpha]_{\mathrm{D}}^{25}+80\left(c 0.4, \mathrm{H}_{2} \mathrm{O}\right)\right\} ;$ $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3244$ and $3322(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 2.04(1 \mathrm{H}, \mathrm{m}, 5-$ $\mathrm{H}), 3.30-3.47(4 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $11.3,8-\mathrm{H})$ and 3.89-3.95 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 45.0,55.8,58.2,61.3,70.4,72.1$ and 74.0; $m / z(\mathrm{CI}) 177\left(\mathrm{MH}^{+}\right)$.
(1S,2S,3S,4R,5R,6R)-5-Hydroxymethyl-7-oxabicyclo[4.1.0]-heptane-2,3,4-triol 3.-Similar catalytic hydrogenolysis of compound $32(255.9 \mathrm{mg}, 0.574 \mathrm{mmol})$ as above afforded, after flash chromatography [chloroform-methanol ($5: 2 \mathrm{v} / \mathrm{v}$)], the (2S)diastereoisomer 3 ($92.1 \mathrm{mg}, 91 \%$) as colourless needles, m.p. $148-150^{\circ} \mathrm{C}(\mathrm{MeOH}) ; R_{\mathrm{f}} 0.28$ [chloroform-methanol ($5: 2 \mathrm{v} / \mathrm{v}$)] (Found: C, 47.6; H, 6.9. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 47.7$; $\mathrm{H}, 6.9 \%$); $[\alpha]_{\mathrm{D}}^{24}+7.0\left(c 0.4, \mathrm{H}_{2} \mathrm{O}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440$ and $3470(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 2.11(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.42-3.58(4 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{dd}, J$ 8.0 and $11.0,8-\mathrm{H}), 4.00\left(1 \mathrm{H}, \mathrm{dd}, J 4.2\right.$ and $\left.11.0,8^{\prime}-\mathrm{H}\right)$ and 4.38 $(1 \mathrm{H}, \mathrm{t}, J 4.5) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 44.8,54.4,56.9,61.8,66.4,66.7$ and 73.2; $m / z(\mathrm{CI}) 177\left(\mathrm{MH}^{+}\right)$.
(1R,2S,3S,4R,5R,6S)-5-Hydroxymethyl-7-oxabicyclo[4.1.0]-heptane-2,3,4-triol 4.-Similar catalytic hydrogenolysis of compound $33(723.5 \mathrm{mg}, 1.62 \mathrm{mmol})$ provided, after chromatography [chloroform-methanol ($3: 1 \mathrm{v} / \mathrm{v}$)], the ($1 R, 2 S, 6 S$)diastereoisomer $4(254.6 \mathrm{mg}, 89 \%)$ as colourless plates, m.p. $129-131^{\circ} \mathrm{C}(\mathrm{MeOH})$, [lit., ${ }^{8}$ oil]; $R_{\mathrm{f}} 0.30$ [chloroformmethanol (3:1)] (Found: C, 47.6; H, 6.9. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C , 47.7; H, 6.9\%); $[\alpha]_{\mathrm{D}}^{23}-39.5$ (c 0.9, $\mathrm{H}_{2} \mathrm{O}$), $\left\{\right.$ lit. ${ }^{12}[\alpha]_{\mathrm{D}}^{25}-76$ $\left.\left(c 0.1, \mathrm{H}_{2} \mathrm{O}\right)\right\} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3364$ and $3426(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $2.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.32(1 \mathrm{H}, \mathrm{d}, J 3.7), 3.43(1 \mathrm{H}, \mathrm{t}, J 2.9), 3.50-$ $3.60(2 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $11.3,8-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{dd}, J$ 3.7 and $\left.11.3,8^{\prime}-\mathrm{H}\right)$ and $4.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 45.3,55.6,56.6$, 61.6, 66.7, 68.0 and $71.2 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 177\left(\mathrm{MH}^{+}\right)$.
(1R,2S,3S,4R,5R,6R)-2,3,4-Tri-O-acetyl-5-acetoxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-triol 5.-A solution of cyclophellitol $1(17.4 \mathrm{mg}, 0.099 \mathrm{mmol})$, acetic anhydride $\left(0.3 \mathrm{~cm}^{3}\right)$ and a crystal of 4-dimethylaminopyridine (DMAP) in pyridine $\left(1.5 \mathrm{~cm}^{3}\right)$ was stirred at room temp. for 12 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ and an aq. saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}\left(1.5 \mathrm{~cm}^{3}\right)$ was added. The aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 4 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were washed with brine $\left(2 \times 4 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($1: 2 \mathrm{v} / \mathrm{v}$)] gave the tetraacetate 5 (31.0 $\mathrm{mg}, 91 \%$) as colourless needles, m.p. $105-106^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.44$
[hexane-diethyl ether ($1: 3 \mathrm{v} / \mathrm{v}$)] (Found: C, $52.0 ; \mathrm{H}, 5.8$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9}$ requires $\mathrm{C}, 52.3 ; \mathrm{H}, 5.85 \%$); $[\alpha]_{\mathrm{D}}^{23}+100(c 0.2)$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1752(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.04(3 \mathrm{H}, \mathrm{s}$, Ac), $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.15$ (1 H, d, J 3.5, 1-H), $3.46(1 \mathrm{H}$, br d, $J 3.5,6-\mathrm{H}), 4.16(1 \mathrm{H}$, dd, J 7.3 and $11.3,8-\mathrm{H}), 4.31\left(1 \mathrm{H}, \mathrm{dd}, J 4.2\right.$ and $\left.11.3,8^{\prime}-\mathrm{H}\right), 5.02(1$ $\mathrm{H}, \mathrm{t}, J 10,4-\mathrm{H})$ and $5.0-5.19(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}} 20.5(\times 2)$, $20.7(\times 2), 39.8,53.2,54.7,62.1,66.5,71.1,72.4,169.6,169.7$, 169.9 and $170.5 ; m / z(E I) 345\left(\mathrm{MH}^{+}, 6 \%\right), 182(13)$ and $43(100)$.
(1S,2S,3S,4R,5R,6S)-2,3,4-Tri-O-acetyl-5-acetoxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-triol 6.-Similar acetylation of the epoxide $2(10.0 \mathrm{mg}, 0.057 \mathrm{mmol})$ and work-up as above gave the tetraacetate $6(16.2 \mathrm{mg}, 83 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.43$ [hexane-diethyl ether ($1: 3 \mathrm{v} / \mathrm{v}$)] (Found: C, $52.1 ; \mathrm{H}, 6.0$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9}$ requires $\left.\mathrm{C}, 52.3 ; \mathrm{H}, 5.85 \%\right) ;[\alpha]_{\mathrm{D}}^{21}+90.4(c 0.7)$; $\nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1748(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.03(3 \mathrm{H}, \mathrm{s}$, Ac), $2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.52(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.22(1$ $\mathrm{H}, \mathrm{d}, J 3.9,6-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{dd}, J 1.6$ and $3.9,1-\mathrm{H}), 4.11(1 \mathrm{H}, \mathrm{dd}$, $J 5.2$ and $11.7,8-\mathrm{H}), 4.22\left(1 \mathrm{H}\right.$, dd, $J 3.4$ and $\left.11.7,8^{\prime}-\mathrm{H}\right), 5.07(1$ H , dd, $J 9.9$ and $12.0,4-\mathrm{H}), 5.27(1 \mathrm{H}$, dd, $J 9.1$ and $9.9,3-\mathrm{H})$ and $5.34(1 \mathrm{H}$, dd, $J 1.8$ and $9.1,2-\mathrm{H}) ; \delta_{\mathrm{C}} 20.5(\times 2), 20.6,20.7$, $40.4,53.5,54.2,62.2,68.7,70.1,71.4,169.5,169.8,170.4$ and 170.5; $m / z(\mathrm{EI}) 345\left(\mathrm{MH}^{+}, 6 \%\right), 182(40)$ and $43(100)$.
(1R,2R,3S,4R,5R,6R)-2,3,4-Tri-O-acetyl-5-acetoxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-triol 7.-Similar acetylation of the epoxide $3(18.2 \mathrm{mg}, 0.103 \mathrm{mmol})$ as above furnished, after flash chromatography [hexane-diethyl ether ($2: 5 \mathrm{v} / \mathrm{v}$)], the tetraacetate 7 ($32.3 \mathrm{mg}, 91 \%$) as colourless needles, m.p. $111.5-$ $113^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.37$ [hexane-diethyl ether $(1: 3)$] (Found: $\mathrm{C}, 52.4 ; \mathrm{H}$, $5.85 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9}$ requires $\left.\mathrm{C}, 52.3 ; \mathrm{H}, 5.85 \%\right) ;[\alpha]_{\mathrm{D}}^{23}-55.3(c 0.4)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1744(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.06(3 \mathrm{H}, \mathrm{s}$, Ac), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.47(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.44(1$ H , dd, $J 2.5$ and $3.8,6-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $4.1,1-\mathrm{H}), 4.25$ $(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $11.2,8-\mathrm{H}), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J 5.5\right.$ and $\left.11.2,8^{\prime}-\mathrm{H}\right)$, $4.98(1 \mathrm{H}$, dd, $J 5.3$ and $9.3,3-\mathrm{H}), 5.14(1 \mathrm{H}$, dd, $J 7.9$ and 9.3 , $4-\mathrm{H})$ and $5.51(1 \mathrm{H}, \mathrm{t}, J 4.8,2-\mathrm{H}) ; \delta_{\mathrm{C}} 20.4,20.5,20.6,20.7,40.0$, $50.8,53.7,62.5,66.0,66.3,69.2,169.4,169.7,170.2$ and $170.5 ; \mathrm{m} / \mathrm{z}$ (EI) $345\left(\mathrm{MH}^{+}, 68 \%\right)$ and $182(100)$.
(1S,2R,3S,4R,5R,6S)-2,3,4-Tri-O-acetyl-5-acetoxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-triol 8.-Similar acetylation of the epoxide $4(15.8 \mathrm{mg}, 0.090 \mathrm{mmol})$, as above furnished, after flash chromatography [hexane-diethyl ether ($1: 2 \mathrm{v} / \mathrm{v}$)], the tetraacetate $8(28.8 \mathrm{mg}, 93 \%)$ as a white solid, m.p. $74-75^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ 0.46 [hexane-diethyl ether ($1: 3 \mathrm{v} / \mathrm{v}$)] (Found: C, $52.35 ; \mathrm{H}, 5.8$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9}$ requires $\mathrm{C}, 52.3 ; \mathrm{H}, 5.85 \%$); $\left.\alpha\right]_{\mathrm{D}}^{22} 0.0$ (c 0.4); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1747(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.98(3 \mathrm{H}, \mathrm{s}$, Ac), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.46(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.13$ ($1 \mathrm{H}, \mathrm{d}, J 3.2,6-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{t}, J 3.2,1-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $11.5,8-\mathrm{H}), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J 4.1\right.$ and $\left.11.5,8^{\prime}-\mathrm{H}\right), 5.08(1 \mathrm{H}$, dd, $J 3.0$ and $10.7,3-\mathrm{H}), 5.18(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $10.7,4-\mathrm{H})$ and $5.71(1 \mathrm{H}, \mathrm{t}, J 3.0,2-\mathrm{H}) ; \delta_{\mathrm{C}} 20.4(\times 2), 20.6(\times 2), 40.5,52.9$ $(\times 2), 62.6,65.9,67.2,69.1,169.4,169.7,169.9$ and $170.4 ; \mathrm{m} / \mathrm{z}$ (EI) $345\left(\mathrm{MH}^{+}, 20 \%\right)$ and 182 (100).

3,4-O-Cyclohexylidene-1,3,4-trihydroxycyclohexane-1,5-carbolactone 10. ${ }^{16}$-A mixture of (-)-quinic acid (1,3,4,5-tetrahydroxycyclohexanecarboxylic acid) $9(100 \mathrm{~g}, 0.52 \mathrm{~mol})$ and cyclohexanone ($152 \mathrm{~cm}^{3}, 1.56 \mathrm{~mol}$) containing conc. phosphoric acid (10 drops) was heated under reflux for 30 min . The solution was then distilled for $c a .2 .5 \mathrm{~h}$ until all the water ($c a .19 \mathrm{~cm}^{3}$) was removed. The yellow solution was left to cool and ethyl acetate $\left(160 \mathrm{~cm}^{3}\right)$, potassium hydrogen carbonate $(16 \mathrm{~g})$ and anhydrous sodium sulfate (16 g) were added. The mixture was stirred until neutral, as shown by pH paper, filtered and the filtrate concentrated to leave a yellow solid. Recrystallisation of the
solid from chloroform-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) gave the title compound $10(110 \mathrm{~g}, 83 \%)$ as colourless needles, m.p. $140-142^{\circ} \mathrm{C}$ (lit., ${ }^{15} 139-141{ }^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.30$ [hexane-diethyl ether ($1: 2$) $] ;[\alpha]_{\mathrm{D}}^{21}$ -30.4 (c 1.0) \{lit., ${ }^{15}[\alpha]_{\mathrm{D}}^{20}-33$ (c 1.1) \}; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3425$ (OH) and $1797($ lactone $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.40-1.75(10 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}$, dd, $J 14$ and 3), $2.34(2 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{d}, J 12), 3.04(1 \mathrm{H}, \mathrm{bs}$, $\mathrm{OH}), 4.31(1 \mathrm{H}$, ddd, $J 6,2.3$ and 1.2$), 4.48(1 \mathrm{H}, \mathrm{td}, J 7$ and 2.85$)$ and $4.74(1 \mathrm{H}, \mathrm{dd}, J 6$ and 2.5$) ; m / z(\mathrm{EI}) 254\left(\mathrm{M}^{+}, 24 \%\right)$ and 211 $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, 100\right)$.
(1R,2R,3S,4R,5R)-3,4-Di-O-benzyl-5-benzyloxymethyl-1,2-O-cyclohexylidenecyclohexane-1,2,3,4-tetraol 12.-Sodium hydride $(80 \%, 30 \mathrm{mg}, 1.04 \mathrm{mmol})$ was washed with dry hexane ($2 \times 1 \mathrm{~cm}^{3}$) and suspended in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$. A solution of the alcohol $11(304.5 \mathrm{mg}, 0.695 \mathrm{mmol})$ in THF ($2 \mathrm{~cm}^{3}$) was added dropwise and the mixture was stirred for 1 h . Benzyl bromide $\left(0.165 \mathrm{~cm}^{3}, 1.39 \mathrm{mmol}\right)$ was then added dropwise, followed by the addition of a catalytic amount of tetrabutylammonium iodide. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h and then methanol ($1 \mathrm{~cm}^{3}$) was slowly added, followed by the addition of water ($3 \mathrm{~cm}^{3}$). The organic solvent was removed under reduced pressure, chloroform $\left(10 \mathrm{~cm}^{3}\right)$ was then added to the residue and the aq. layer was then extracted with chloroform $\left(4 \times 4 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine $\left(3 \times 3 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($3: 1 \mathrm{v} / \mathrm{v}$)] provided the title compound 12 ($300 \mathrm{mg}, 82 \%$) as a white solid, m.p. $82.5-83^{\circ} \mathrm{C}$ (diethyl etherhexane); $R_{\mathrm{f}} 0.31$ [hexane-diethyl ether (1:1)] (Found: C, 76.9; $\mathrm{H}, 7.4 . \mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 77.2 ; \mathrm{H}, 7.6 \%\right) ;[\alpha]_{\mathrm{D}}^{20}+28.8(c 1.0)$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3000-3100$ (aromatic $\left.\mathrm{C}-\mathrm{H}\right) ; \delta_{\mathrm{H}} 1.4-2.0(13 \mathrm{H}$, m), $3.52(2 \mathrm{H}$, br d, $J 4.3$), $3.65(1 \mathrm{H}$, dd, $J 8.7$ and $3.9,3-\mathrm{H}), 3.76$ $(1 \mathrm{H}, \mathrm{t}, J 8.7,4-\mathrm{H}), 4.06-4.14(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{t}, J 4.4$, $2-\mathrm{H}), 4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.50$ and $4.89\left(2 \mathrm{H}, \mathrm{ABq}, J 10.9, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.27-7.42(15 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right) ; m / z(\mathrm{EI}) 528\left(\mathrm{M}^{+}, 4 \%\right), 437\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 7\right)$ and 91 (100).
(1R,2R,3S,4R,5R)-3,4-Di-O-benzyl-5-benzyloxymethylcyclo-hexane-1,2,3,4-tetraol 13.-To a solution of the compound 12 $(157 \mathrm{mg}, 0.297 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added trifluoroacetic acid (TFA) (2 drops) and $\mathrm{H}_{2} \mathrm{O}$ (1 drop). The mixture was stirred at room temp. for 24 h and poured into an aq. solution of $\mathrm{NaHCO}_{3}\left(5 \% \mathrm{w} / \mathrm{v}, 1 \mathrm{~cm}^{3}\right)$. The aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 2 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine $\left(2 \times 1 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate followed by flash chromatography [hexane-ethyl acetate ($4: 5 \mathrm{v} / \mathrm{v}$)] provided the title compound 13 ($120 \mathrm{mg}, 90 \%$) as plates, m.p. $110.5-112^{\circ} \mathrm{C}$ (hexane-diethyl ether); $R_{\mathrm{f}} 0.40$ [hexane-ethyl acetate (2:3)] (Found: C, 75.2; H, 7.2. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 7.2 \%$); $[\alpha]_{\mathrm{D}}^{20}+26.3(c 1.2) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.63(1 \mathrm{H}, \mathrm{m})$, $1.83-1.90(2 \mathrm{H}, \mathrm{m}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 2.8$), 3.50-3.65(3 \mathrm{H}$, $\mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 9.3$), 4.16(1 \mathrm{H}, \mathrm{t}, J 2.75,2-\mathrm{H}), 4.47(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.50$ and $4.86(2 \mathrm{H}, \mathrm{ABq}$, $J 10.8, \mathrm{OCH}_{2} \mathrm{Ph}$) and $7.21-7.61\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; m / z$ (EI) $357\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 5 \%\right)$ and 91 (100).
(1R,2R,3S,4R,5R)-3,4-Di-O-benzyl-5-benzyloxymethyl-1,2-O,O-sulfinyl-cyclohexane-1,2,3,4-tetraol 14.-To a solution of the diol $13(223.7 \mathrm{mg}, 0.50 \mathrm{mmol})$, triethylamine $\left(0.28 \mathrm{~cm}^{3}, 2\right.$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added thionyl chloride ($0.054 \mathrm{~cm}^{3}, 0.75 \mathrm{mmol}$) over 5 min . The reaction mixture was diluted with cold diethyl ether ($25 \mathrm{~cm}^{3}$) and washed with cold water ($2 \times 15 \mathrm{~cm}^{3}$) and brine ($15 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$)] provided the title compound 14 ($230 \mathrm{mg}, 93 \%$) as colourless needles, m.p.
$99.5-102^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.40$ [hexane-diethyl ether (1:1)] (Found; C, $67.5 ; \mathrm{H}, 6.1 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~S}$ requires $\left.\mathrm{C}, 68.0, \mathrm{H}, 6.1 \%\right)[\alpha]_{\mathrm{D}}^{20}+62.3$ (c 0.5); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1211(\mathrm{~S}=\mathrm{O})$ and $810-850(\mathrm{~S}-\mathrm{O}-\mathrm{C}) ; \delta_{\mathrm{H}}$ 1.69-1.82 ($2 \mathrm{H}, \mathrm{m}$), 2.16-2.23 ($1 \mathrm{H}, \mathrm{m}$), 3.48-3.55 ($2 \mathrm{H}, \mathrm{m}$), 3.72 ($1 \mathrm{H}, \mathrm{t}, J 7.8$), $4.85(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 3.7), $4.44(2 \mathrm{H}, \mathrm{s}), 4.48$ ($1 \mathrm{H}, \mathrm{d}, J 11$), 4.68 ($1 \mathrm{H}, \mathrm{d}, J 11.8$), $4.76(1 \mathrm{H}, \mathrm{d}, J 10.4), 4.77$ ($1 \mathrm{H}, \mathrm{d}, J 10.8$), 4.87-4.93 ($1 \mathrm{H}, \mathrm{m}$), $5.14(1 \mathrm{H}, \mathrm{t}, J 4.6)$ and 7.21-7.36 ($15 \mathrm{H}, \mathrm{m}$); m / z (EI) 403 ($\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 4 \%$) and 91 (100).
(1R,2R,3S,4R,5R)-3,4-Di-O-benzyl-5-benzyloxymethyl-1,2-O,O-sulfonyl-cyclohexane-1,2,3,4-tetraol 15.-To a solution of the diol $13(88 \mathrm{mg}, 0.198 \mathrm{mmol})$, triethylamine $\left(0.110 \mathrm{~cm}^{3}, 0.792\right.$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added thionyl chloride ($0.05 \mathrm{~cm}^{3}, 0.69 \mathrm{mmol}$) over 5 min . The reaction mixture was diluted with cold diethyl ether $\left(12 \mathrm{~cm}^{3}\right)$ and washed with cold water ($2 \times 12 \mathrm{~cm}^{3}$) and brine ($10 \mathrm{~cm}^{3}$). The organic solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The filtrate was concentrated and the residual triethylamine was removed under high vacuum (ca. 1 h). The solid residue was dissolved in $\mathrm{CCl}_{4}\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$, and the solution cooled in an ice-bath. Cold water ($8 \mathrm{~cm}^{3}$) was added followed by a catalytic amount of $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaIO}_{4}(85 \mathrm{mg}, 0.396 \mathrm{mmol})$. After 1 h , diethyl ether ($15 \mathrm{~cm}^{3}$) was added and the two layers were separated. The aq. layer was extracted with diethyl ether ($2 \times 5 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with brine $(2 \times 5$ $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether (2:3 $\mathrm{v} / \mathrm{v})$] provided the title compound $15(89.9 \mathrm{mg}, 89 \%$) as a white solid, m.p. 106.5-108 ${ }^{\circ} \mathrm{C} ; \boldsymbol{R}_{\mathrm{f}} 0.35$ [hexane-diethyl ether (2:3)] (Found: C, $65.65 ; \mathrm{H}, 5.75 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 65.9, \mathrm{H}$, 5.9%); $[\alpha]_{\mathrm{D}}^{20}+27.8(c 0.9) ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1210$ ($\mathrm{S}=\mathrm{O}$) and $810-$ 850 (S-O-C); $\delta_{\mathrm{H}} 1.61-1.68(1 \mathrm{H}, \mathrm{m}), 2.13-2.35(2 \mathrm{H}, \mathrm{m}), 3.49$ ($2 \mathrm{H}, \mathrm{d}, J 5.0$), 3.69-3.77 ($2 \mathrm{H}, \mathrm{m}$), 4.45 ($2 \mathrm{H}, \mathrm{s}$), 4.45 ($1 \mathrm{H}, \mathrm{d}, J$ 10.9), 4.70 ($1 \mathrm{H}, \mathrm{d}, J 11.8$), 4.73 ($1 \mathrm{H}, \mathrm{d}, J 12.6$), 4.78 ($1 \mathrm{H}, \mathrm{d}, J$ 12.0), 4.86-4.95 ($1 \mathrm{H}, \mathrm{m}$), $5.09-5.11(1 \mathrm{H}, \mathrm{m})$ and $7.17-7.37$ ($15 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{EI}) 419\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 9 \%\right)$ and 91 (100).
(1R,2R,3R,4S,6R)-1,2-Di-O-benzyl-6-benzyloxymethyl-4-iodocyclohexane-1,2,3-triol 16.-A solution of the cyclic sulfate 15 ($127 \mathrm{mg}, 0.249 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(110 \mathrm{mg}, 0.299 \mathrm{mmol})$ in THF ($12 \mathrm{~cm}^{3}$) was heated under reflux for 6 h under nitrogen. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(15 \mathrm{~mm}^{3}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(4 \mathrm{~mm}^{3}\right)$ were added and the solution stirred for 30 min at $60^{\circ} \mathrm{C}$. An excess of $\mathrm{NaHCO}_{3}(100$ mg) was added and the mixture stirred for 25 min . The mixture was filtered through a pad of silica gel topped with Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($3: 1 \mathrm{v} / \mathrm{v}$)] afforded the title compound 16 as a colourless oil ($116 \mathrm{mg}, 83 \%$); $R_{\mathrm{f}} 0.60$ [hexane-diethyl ether ($1: 1$)] (Found: C, 60.5; H, 5.5. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{IO}_{4}$ requires C, $60.2 ; \mathrm{H}, 5.6 \%$); $[\alpha]_{\mathrm{D}}^{22}+46.4$ (c 1.4); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3440(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.8-2.3(3 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{d}, J$ $2.05, \mathrm{OH}$), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $2.9,7-\mathrm{H}$), $3.67(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $\left.4.9,7^{\prime}-\mathrm{H}\right), 3.78(1 \mathrm{H}, \mathrm{t}, J 8.7,1-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 2.9, 2-H), $4.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.39-4.53(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.60$ and $4.69\left(2 \mathrm{H}, \mathrm{ABq}, J 11.4, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.79$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9, \mathrm{OCH}_{2} \mathrm{Ph}$) and 7.21-7.41 ($15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$); $m / z(E I) 558\left(\mathrm{M}^{+}, 2 \%\right), 467\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 32\right)$ and 91 (100).
(1R,2R,3R,4S,6R)-3-O-Acetyl-1,2-di-O-benzyl-6-benzyloxy-methyl-4-iodocyclohexane-1,2,3-triol 17.-To a mixture of the iodo alcohol 16 ($669.4 \mathrm{mg}, 1.20 \mathrm{mmol}$), pyridine ($0.213 \mathrm{~cm}^{3}, 2.64$ mmol) and a catalytic amount of DMAP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added acetic anhydride ($0.125 \mathrm{~cm}^{3}, 1.32 \mathrm{mmol}$) at room temp. The solution was stirred at this temp. for 24 h , then poured into a solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}\left(8 \mathrm{~cm}^{3}\right)$ and the aq. phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 8 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($2 \times 8 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$
and filtered. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($3: 1 \mathrm{v} / \mathrm{v}$)] afforded the title compound $17(680.5 \mathrm{mg}, 95 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.55$ [hexane-diethyl ether ($2: 1 \mathrm{v} / \mathrm{v}$)] (Found: 60.1; H, 5.4. $\mathrm{C}_{30^{-}}$ $\mathrm{H}_{33} \mathrm{IO}_{5}$ requires $\mathrm{C}, 60.0 ; \mathrm{H} ; 5.5 \%$); $[\alpha]_{\mathrm{D}}^{28}+59.5$ (c 1.2); $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1744(\mathrm{C}=0) ; \delta_{\mathrm{H}} 2.04-2.19(3 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{Ac}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $2.9,7-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $\left.4.9,7^{\prime}-\mathrm{H}\right), 3.75(1 \mathrm{H}, \mathrm{t}, J 9.0,1-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and 3.5 , $2-\mathrm{H}), 4.43-4.50\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.55$ and $4.65(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}$ $\left.11.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.19(1 \mathrm{H}, \mathrm{t}, J$ $3.5,3-\mathrm{H}$) and $7.22-7.35\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; \mathrm{m} / \mathrm{z}$ (EI) 509 $\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 13 \%\right), 493\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}, 23\right), 403\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 46$) and 91 (100).

(1R,2R,3R,4R)-1-O-Acetyl-2,3-di-O-benzyl-4-benzyloxy-

 methylcyclohex-5-ene-1,2,3-triol 18.-A solution of the iodo acetate $\mathbf{1 7}(1.15 \mathrm{~g}, 1.92 \mathrm{mmol}), 1,8$-diazabicyclo[5.4.0]undec-7ene (DBU) ($0.57 \mathrm{~cm}^{3}, 3.83 \mathrm{mmol}$) in xylene ($25 \mathrm{~cm}^{3}$) was heated to reflux under nitrogen for 12 h . The mixture was cooled and filtered through a pad of silica gel topped with Celite and washed with diethyl ether ($30 \mathrm{~cm}^{3}$). Concentration of the filtrate followed by flash chromatography . Thexane-diethyl ether ($5: 2 \mathrm{v} / \mathrm{v}$)] gave the title compound $18(0.75 \mathrm{~g}, 83 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.48$ [hexane-diethyl ether ($2: 1 \mathrm{v} / \mathrm{v}$)] (Found: $\mathrm{C}, 76.5 ; \mathrm{H}, 6.7 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 76.25 ; \mathrm{H}, 6.8 \%\right) ;[\alpha]_{\mathrm{D}}^{22}-$ 19.7 (c 1.2); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1735(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.11(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ac})$, $2.50(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $6.0,7-\mathrm{H}), 3.61(1 \mathrm{H}$, dd, $J 9.0$ and $4.0,7^{\prime}-\mathrm{H}$), 3.73 ($1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $3.7,2-\mathrm{H}$), 3.82 (1 $\mathrm{H}, \mathrm{t}, J 9.7,3-\mathrm{H}), 4.40-4.63\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.72(1 \mathrm{H}, J 11.5$, $\mathrm{OCH}_{2} \mathrm{Ph}$), $4.92\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.67(1 \mathrm{H}, \mathrm{dd}, J 4.8$ and $3.2,1-\mathrm{H}), 5.76(1 \mathrm{H}$, ddd, $J 9.6,4.8$ and $2.6,6-\mathrm{H}), 5.93(1 \mathrm{H}$, dd, $J 9.6$ and $2.3,5-\mathrm{H}$) and $7.21-7.33\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$; m / z (EI) $381\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 9 \%\right), 275\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 32\right)$ and 91 (100).(1R,2R,3R,4R)-2,3-Di-O-benzyl-4-benzyloxymethylcyclohex5 -ene-1,2,3-triol 19.-Method A. A solution of the allyl acetate $18(185.6 \mathrm{mg}, 0.393 \mathrm{mmol})$ and a catalytic amount of sodium methoxide in anhydrous methanol $\left(10 \mathrm{~cm}^{3}\right)$ was stirred at room temp. for 15 h . The mixture was filtered through a pad of silica gel topped with Celite and washed with ethyl acetate $\left(20 \mathrm{~cm}^{3}\right)$. Concentration of the filtrate, followed by flash chromatography [hexane-diethylether ($1: 1 \mathrm{v} / \mathrm{v}$)] gave the title compound 19 (160.3 $\mathrm{mg}, 95 \%$) as a colourless oil; $R_{\mathrm{f}} 0.35$ [hexane-diethyl ether ($1: 1$ v / v)]; (Found: C, 78.0; H, 7.05. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, 78.1; H, $7.0 \%) ;[\alpha]_{\mathrm{D}}^{28}+54.3(c 1.3) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 2.45-$ $2.53(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $6.4,7-\mathrm{H}), 3.58$ ($1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $4.3,7^{\prime}-\mathrm{H}$), $3.65(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 4.1, 2-H), $3.81(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.22$ and $4.48\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.5, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.68$ and $4.77(2 \mathrm{H}, \mathrm{ABq}$, J 11.7, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.51$ and $4.88\left(2 \mathrm{H}, \mathrm{ABq}, J\right.$ 11.1, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $5.82\left(2 \mathrm{H}\right.$, br s, $5-\mathrm{H}$ and $6-\mathrm{H}$) and $7.24-7.36\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$; m / z (EI) $339\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 9 \%\right)$ and 91 (100).
Method B. A solution of the cyclic sulfate $15(220 \mathrm{mg}, 0.431$ mmol), $\mathrm{Bu}_{4} \mathrm{NI}(191.2 \mathrm{mg}, 0.518 \mathrm{mmol})$ in THF ($30 \mathrm{~cm}^{3}$) was heated at reflux for 6 h under nitrogen. The solvent was then evaporated and xylene ($30 \mathrm{~cm}^{3}$) and DBU ($0.142 \mathrm{~cm}^{3}, 0.950$ mmol) were added to the residue. The solution was heated under reflux for a further 24 h and then cooled, THF ($30 \mathrm{~cm}^{3}$) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(0.2 \mathrm{~cm}^{3}\right)$ were both added and the solution stirred for 1 h . An excess of NaHCO_{3} was added and the solution stirred until neutralised, as shown by pH paper. The mixture was then filtered through a pad of silica gel topped with Celite. Concentration of the filtrate, followed by flash chromatography [hexane-ethyl acetate ($3: 1 \mathrm{v} / \mathrm{v}$)] gave the title compound 19 ($113.6 \mathrm{mg}, 61 \%$) as a colourless oil.

Method C. To a solution of the compound $21(181.4 \mathrm{mg}, 0.309$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$ was added MCPBA (125.5
$\mathrm{mg}, 0.618 \mathrm{mmol}$). The solution was stirred for 10 min and then allowed to rise to room temp. Diisopropylethylamine (0.161 $\mathrm{cm}^{3}, 0.927 \mathrm{mmol}$) and toluene ($5 \mathrm{~cm}^{3}$) were added to the colourless solution, which was heated at $80^{\circ} \mathrm{C}$ for 1 h . The resultant yellow solution was poured into an aq. saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}\left(2 \mathrm{~cm}^{3}\right)$ and the aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 3 \mathrm{~cm}^{3}\right)$. The combined organic extracts were then washed with brine $\left(2 \times 2 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate, followed by flash chromatography [hexane-diethyl ether ($2: 1 \mathrm{v} / \mathrm{v}$)] gave the title compound 19 (96 $\mathrm{mg}, 72 \%$) as a colourless oil.
(1R,2R,3R,4S,6R)-1,2-Di-O-benzyl-6-benzyloxymethyl-4-phenylselenocyclohexane-1,2,3-triol 21.-Diphenyl diselenide $(9.5 \mathrm{mg}, 0.030 \mathrm{mmol})$ was dissolved in absolute ethanol $\left(4 \mathrm{~cm}^{3}\right)$ and sodium borohydride $(2.3 \mathrm{mg}, 0.061 \mathrm{mmol})$ was then added under nitrogen at $0^{\circ} \mathrm{C}$. The cyclic sulfate $15(25.9 \mathrm{mg}, 0.051$ mmol) in THF ($2 \mathrm{~cm}^{3}$) was added and the solution stirred for 2 h at $0^{\circ} \mathrm{C}$. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(0.06 \mathrm{~cm}^{3}\right)$ and water $\left(0.04 \mathrm{~cm}^{3}\right)$ were then added and the solution stirred for 2 h at room temp. Anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added with stirring until neutral, as shown by pH paper. The mixture was filtered through a pad of silica gel topped with Celite. Concentration of the filtrate, followed by flash chromatography [hexane-diethyl ether ($2: 1$ $\mathrm{v} / \mathrm{v})]$ gave the title compound $21(23.8 \mathrm{mg}, 80 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.50$ [hexane-diethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 69.2; $\mathrm{H}, 6.05 . \mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Se}$ requires $\left.\mathrm{C}, 69.5 ; \mathrm{H}, 6.2 \%\right) ;[\alpha]_{\mathrm{D}}^{22}+12.4(c$ 1.7); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.93(1 \mathrm{H}, \mathrm{dt}, J 14.1$ and 3.3), 2.08-2.12 (1 H, m), 2.29-2.37 (1 H, m), $2.68(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{OH})$, $3.50(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $3.2,7-\mathrm{H}), 3.62-3.67\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7^{\prime}-\mathrm{H}\right)$, $3.74(1 \mathrm{H}, \mathrm{t}, J 9.0,1-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $3.0,2-\mathrm{H}), 4.11$ (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.41$ and $4.47\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.51$ and $4.80\left(2 \mathrm{H}, \mathrm{ABq}, J 10.9, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.61$ and $4.69(2 \mathrm{H}, \mathrm{ABq}$, $\left.J 11.5, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.21-7.50\left(20 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{Se} P h\right)$; m / z (EI) $558\left(\mathrm{M}^{+}, 10 \%\right), 497\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 3\right), 391\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}, 15$) and 91 (100).
(1S,2R,3R,4R)-1-O-Benzoyl-2,3,-di-O-benzyl-4-benzyloxy-methylcyclohex-5-ene-1,2,3-triol 22.-A solution of the allylic alcohol 19 ($589.7 \mathrm{mg}, 1.37 \mathrm{mmol}), \mathrm{PPh}_{3}(539.6 \mathrm{mg}, 2.06 \mathrm{mmol})$ and benzoic acid ($251.2 \mathrm{mg}, 2.06 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) was stirred under nitrogen at $0^{\circ} \mathrm{C}$ for 15 min . Diisopropyl azodicarboxylate (DIAD) ($0.459 \mathrm{~cm}^{3}, 2.26 \mathrm{mmol}$) was added dropwise over 10 min and the yellow solution was stirred for 30 min at room temp. Concentration of the solution gave a yellow oil which was flash chromatographed [hexane-diethyl ether ($8: 1$) followed by hexane-diethyl ether $(5: 1 \mathrm{v} / \mathrm{v})]$ to give the title compound $22(680.0 \mathrm{mg}, 93 \%)$ as colourless needles, m.p. $54.5-55.5^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.30$ [hexane-diethyl ether ($5: 1$)] (Found: $\mathrm{C}, 78.4 ; \mathrm{H}, 6.4 . \mathrm{C}_{35} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 78.6 ; \mathrm{H}, 6.4 \%$; $[\alpha]_{\mathrm{D}}^{28}$ $+215.6(c 1.2) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1718(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.63(1 \mathrm{H}, \mathrm{m}, 4-$ H), 3.50-3.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-7{ }^{\prime}$), $3.81(1 \mathrm{H}, \mathrm{t}, J 9.8,3-\mathrm{H})$, $3.99(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $8.0,2-\mathrm{H}), 4.42$ and $4.48(2 \mathrm{H}, \mathrm{ABq}, J$ $\left.12.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.76$ and $4.86\left(2 \mathrm{H}, \mathrm{ABq}, J 11.3, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 4.50 and $4.92\left(2 \mathrm{H}, \mathrm{ABq}, J 11.0, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.66(1 \mathrm{H}$, ddd, J $10.0,2.5$ and $2.35,5-\mathrm{H}), 5.77,(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10,6-\mathrm{H}), 5.83(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}$) and 7.14-8.01 ($20 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$ and OCOPh); m / z (EI) $443\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 19 \%\right), 337\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 32\right)$ and 91 (100).
(1S,2R,3R,4S,5R,6R)- and (1R,2S,3R,4S,5R,6R)-3-O-Benzoyl-4,5-di-O-benzyl-6-benzyloxymethyl-1,2-epoxycyclohex-ane-3,4,5-triol 23a and 23b.-To a solution of the alkene 22 ($231 \mathrm{mg}, 0.433 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added MCPBA $(112.0 \mathrm{mg}, 0.649 \mathrm{mmol})$ at room temp. and stirred for 48 h , and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. The solution was washed with an aq. solution of $\mathrm{NaOH}\left(0.75 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 8 \mathrm{~cm}^{3}\right)$. The aq. phase was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 8 \mathrm{~cm}^{3}\right)$ and the
combined organic extracts were washed with brine $(2 \times 8$ $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate, followed by flash chromatography [hexane-diethyl ether (7:2 $\mathrm{v} / \mathrm{v})$] gave an inseparable mixture of the diastereoisomeric oxiranes 23 a and $\mathbf{2 3 b}$ ($156.2 \mathrm{mg}, 66 \%$) as a semi-solid.
(1S,2R,3S,4R,5R,6R)- and (1R,2R,3S,4R,5R,6S)-3,4-Di-O-benzyl-5-benzyloxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-
triol 24 and 25.-Method A. To the inseparable diastereoisomeric mixture of the oxiranes 23a and 23b $(150.2 \mathrm{mg}, 0.273$ mmol) in anhydrous methanol ($15 \mathrm{~cm}^{3}$) was added a catalytic amount of anhydrous potassium carbonate. The mixture was stirred at room temp. for 15 h . Concentration of the solution, followed by flash chromatography [hexane-diethyl ether (1:1 v / v)] gave compound 24 ($31.1 \mathrm{mg}, 25.5 \%$) and then compound $25(84.8 \mathrm{mg}, 69.5 \%)$, both as white solids. Compound 24; m.p. $76.5-78.5^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.50$ [hexane-diethyl ether ($1: 2$)] (Found: C, $75.3 ; \mathrm{H}, 6.8 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 75.3 ; \mathrm{H}, 6.8 \%\right) ;[\alpha]_{\mathrm{D}}^{23}+111.1$ (c 0.4); $v_{\max }($ (film $) / \mathrm{cm}^{-1} 3380(\mathrm{OH}) ; \delta_{\mathrm{H}} 2.26(1 \mathrm{H}, \mathrm{d}, J 3.8, \mathrm{OH})$, $2.32(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.12(1 \mathrm{H}, \mathrm{d}, J 3.6), 3.27(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $9.1,7-\mathrm{H}), 3.37\left(1 \mathrm{H}, \mathrm{dd}, J 9.6\right.$ and $\left.7.6,7^{\prime}-\mathrm{H}\right), 3.44(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.59(1 \mathrm{H}, \mathrm{t}, J 8.8,4-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $3.9,3-\mathrm{H}), 3.91(1$ H , dd, $J 7.5$ and 3.6$), 4.50$ and $4.56\left(2 \mathrm{H}, \mathrm{ABq}, J 12.2, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 4.43 and $4.81\left(2 \mathrm{H}, \mathrm{ABq}, J 10.9, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.67$ and $4.92(2 \mathrm{H}$, $\left.\mathrm{ABq}, J 11.7, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.18-7.36\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; m / z$ (EI) $355\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 71 \%\right)$ and 91 (100). Compound 25; m.p. $112.5-113.0^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.42$ [hexane-diethyl ether ($1: 2 \mathrm{v} / \mathrm{v}$)] (Found: C, 75.6; H, 6.9. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 75.3 ; \mathrm{H}, 6.8 \%$); $[\alpha]_{\mathrm{D}}^{28}+86.4(c 0.6) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3350(\mathrm{OH}) ; \delta_{\mathrm{H}} 2.26(1 \mathrm{H}, \mathrm{d}$, $J 4.8, \mathrm{OH}), 2.22-2.27(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{d}, J 4.0,1-\mathrm{H})$, $3.38(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and $1.8,6-\mathrm{H}), 3.46-3.66(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}$, $7-\mathrm{H}$ and $\left.7^{\prime}-\mathrm{H}\right), 3.97-4.03(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.36$ and $4.45(2 \mathrm{H}$, $\left.\mathrm{ABq}, \mathrm{J} 12.1, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.42$ and $4.84(2 \mathrm{H}, \mathrm{ABq}, J 11.2$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.70$ and $4.93\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 11.4, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.18-7.35\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; m / z$ (EI) $355\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right.$, 16%) and 91 (100).

Method B for compound 24. To a solution of the epoxide 28 $(279.1 \mathrm{mg}, 0.498 \mathrm{mmol})$ in dry THF $\left(6 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Bu}_{4} \mathrm{NF}$ ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF, $0.548 \mathrm{~cm}^{3}, 0.548 \mathrm{mmol}$). The mixture was stirred at room temp. for 10 min , filtered through a pad of silica gel topped with Celite and washed with diethyl ether ($30 \mathrm{~cm}^{3}$). Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$)] afforded the title compound 24 ($209.9 \mathrm{mg}, 94 \%$) as a white solid.

Method B for compound 25. To a solution of the epoxide 29 ($211.1 \mathrm{mg}, 0.377 \mathrm{mmol}$) in dry THF ($8 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}_{4} \mathrm{NF}$ ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF, $0.42 \mathrm{~cm}^{3}, 0.420 \mathrm{mmol}$). The mixture was stirred at room temp. for 45 min , filtered through a pad of silica gel topped with Celite, and washed with ethyl acetate $\left(25 \mathrm{~cm}^{3}\right)$. Concentration of the filtrate followed by flash chromatography [hexane-diethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$)] afforded the title compound $25(158.5 \mathrm{mg}, 94 \%$) as a white solid.

Method C. Similar MCPBA epoxidation of the allylic alcohol $26(80.9 \mathrm{mg}, 0.198 \mathrm{mmol})$ as for the preparation of oxiranes 23a and 23b gave, after flash chromatography [hexane-diethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$)], compound 24 ($3.7 \mathrm{mg}, 4 \%$) and then compound 25 ($55.8 \mathrm{mg}, 66 \%$), both as white solids.
(1S,2R,3R,4R)-2,3-Di-O-benzyl-4-benzyloxymethylcyclohex5 -ene-1,2,3-triol 26.-A solution of the benzoate 22 (198 mg , 0.371 mmol) and a catalytic amount of sodium methoxide in anhydrous methanol ($8 \mathrm{~cm}^{3}$) was stirred at room temp. for 12 h . Concentration of the solution, followed by addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ gave a pad of inorganic solid which was removed by filtration through a pad of Celite. Concentration of the filtrate, followed by flash chromatography [hexane-diethyl ether ($3: 2 \mathrm{v} / \mathrm{v}$)] gave the title compound $26(149.3 \mathrm{mg}, 94 \%)$ as colourless needles, m.p. $55.0-56.5^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.22$ [hexane-diethyl
ether ($2: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 78.4; $\mathrm{H}, 7.0 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C , $78.1 ; \mathrm{H}, 7.0 \%) ;[\alpha]_{\mathrm{D}}^{23}+137.3(c 0.8) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{OH})$; $\delta_{\mathrm{H}} 2.16(1 \mathrm{H}, \mathrm{d}, J 4.83, \mathrm{OH}), 2.54-2.62(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.47-3.57$ ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$), $3.62(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $7.0,2-\mathrm{H}$), 3.73 $(1 \mathrm{H}, \mathrm{t}, J 9.1,3-\mathrm{H}), 4.26-4.32(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.41$ and $4.47(2 \mathrm{H}$, $\left.\mathrm{ABq}, J 12.3, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.50$ and $4.86(2 \mathrm{H}, \mathrm{ABq}, J 11.1$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.73$ and $4.95\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 11.6, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.69(2 \mathrm{H}$, $\mathrm{brs}, 5-\mathrm{H}$ and $6-\mathrm{H}$) and $7.21-7.26$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$); m / z (EI) $339\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 11 \%\right)$ and 91 (100).
(1S,2S,3R,4S)-2,3-Di-O-benzyl-5-benzyloxymethyl-1-O-tert-butyldimethylsilylcyclohex-5-ene-1,2,3-triol 27.-A solution of the allylic alcohol 26 ($541.6 \mathrm{mg}, 1.26 \mathrm{mmol}$), imidazole (428.7 $\mathrm{mg}, 6.30 \mathrm{mmol})$, TBDMSCl $(664 \mathrm{mg}, 3.78 \mathrm{mmol})$ and a catalytic amount of DMAP in dry DMF ($12 \mathrm{~cm}^{3}$) was stirred at room temp. for 9 h . Water ($10 \mathrm{~cm}^{3}$) and diethyl ether ($20 \mathrm{~cm}^{3}$) were added and the aq. phase was extracted with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine ($2 \times 8 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate, followed by flash chromatography [hexanediethyl ether ($12: 1 \mathrm{v} / \mathrm{v}$)] provided the title compound 27 (624.9 $\mathrm{mg}, 91.2 \%$) as a colourless oil; $R_{\mathrm{f}} 0.37$ [hexane-diethyl ether ($12: 1 \mathrm{v} / \mathrm{v}$)] (Found: $\mathrm{C}, 75.3 ; \mathrm{H}, 8.3 . \mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$ requires C , $75.0 ; 8.1 \%) ;[\alpha]_{\mathrm{D}}^{23}+120.0(c 0.3) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3000-3100$ (aromatic C-H); $\boldsymbol{\delta}_{\mathrm{H}} 0.09$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.91 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{l}}$), $2.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.50\left(2 \mathrm{H}\right.$, br d, J4.1, $7-\mathrm{H}$ and $7^{\prime}-$ $\mathrm{H}), 3.61-3.65(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.36-4.48(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.89(2 \mathrm{H}$, br s, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.53(1 \mathrm{H}, \mathrm{dt}, J 2.0$ and 10.5$)$ and $5.59(1 \mathrm{H}, \mathrm{dt}, J 1.5$ and $10.5 ; 5-\mathrm{H}$ and $6-\mathrm{H}$) and $7.12-7.34\left(15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; \mathrm{m} / \mathrm{z}$ (CI) $544\left(\mathrm{M}^{+}, 4 \%\right), 453\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 5\right), 438\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}\right.$, $3)$ and 91 (100).
(1R,2S,3S,4R,5R,6R)- and (1S,2S,3S,4R,5R,6S)-3,4-Di-O-benzyl-5-benzyloxymethyl-2-O-tert-butyldimethylsilyl-7-oxabi-cyclo[4.1.0]heptane-2,3,4-triol 28 and 29.-To a solution of the alkene 27 ($624.9 \mathrm{mg}, 1.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ was added MCPBA ($595 \mathrm{mg}, 3.45 \mathrm{mmol}$) at room temp. The mixture was heated under reflux for 40 h and then poured into an aq. solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(10 \% \mathrm{w} / \mathrm{v}, 5 \mathrm{~cm}^{3}\right)$. The aq. phase was extracted with $\mathrm{CHCl}_{3}\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were washed with brine ($2 \times 5 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration of the filtrate, followed by flash chromatography [hexane-diethyl ether ($10: 1 \mathrm{v} / \mathrm{v}$)] provided firstly the less polar title compounds 28 ($281.7 \mathrm{mg}, 44 \%$), followed by compound 29 ($179.0 \mathrm{mg}, 28 \%$), both as colourless oils. Compound 28; $R_{\mathrm{f}} 0.44$ [hexane-diethyl ether ($6: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 72.9; H, 7.9. $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5}$ Si requires $\mathrm{C}, 72.8 ; \mathrm{H}, 7.9 \%$); $[\alpha]_{\mathrm{D}}^{22}+62.6$ (c 1.2); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3000-3100$ (aromatic C-H); $\delta_{\mathrm{H}} 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.17(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{l}}\right), 2.30$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.04(1 \mathrm{H}, \mathrm{d}, J 3.60,6-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{t}, J 10.0,4-\mathrm{H})$, $3.39(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $7.8,3-\mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3.2,1-\mathrm{H})$, $3.56(1 \mathrm{H}, \mathrm{t}, J 8.8,7-\mathrm{H}), 3.73\left(1 \mathrm{H}, \mathrm{dd}, J 8.8\right.$ and $\left.3.5,7^{\prime}-\mathrm{H}\right)$, $4.00(1 \mathrm{H}, \mathrm{d}, J 7.8,2-\mathrm{H}), 4.35\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.51$ (2 $\left.\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.74-4.81\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.08-$ 7.32 ($15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$); m / z (EI) $469\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 3 \%\right)$ and 91 (100).
Compound 29; $R_{\mathrm{f}} 0.31$ [hexane-diethyl ether ($6: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 72.8; H, 8.0. $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 7.9 \%$); $[\alpha]_{\mathrm{D}}^{23}+67.3(c 1.5) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3000-3100$ (aromatic C-H); $\delta_{\mathrm{H}} 0.09$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}, 2.22\right.$ (1 $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{d}, J 4.0,6-\mathrm{H}), 3.24(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 1.9 , $1-\mathrm{H}), 3.41-3.60\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H}\right.$ and $\left.7^{\prime}-\mathrm{H}\right), 4.09(1 \mathrm{H}, \mathrm{dd}$, $J 8.0$ and $1.9,2-\mathrm{H}), 4.36\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.45$ and 4.37 $\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.77-4.87\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and 7.08-7.36(15 H, m, OCH ${ }_{2}$ Ph); m / z (EI) $469\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 6 \%\right.$), $363\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 6\right)$ and 91 (100).
(1R,2S,3S,4S,5R,6R)- and (1S,2R,3S,4S,5R,6R)-3-O-Acetyl-4,5-di-O-benzyl-6-benzyloxymethyl-1,2-epoxycyclohexane-3,4, 5-triol 30 and 31.-Similar MCPBA epoxidation of the allyl acetate $18(1.507 \mathrm{~g}, 3.19 \mathrm{mmol})$ as for the preparation of oxiranes 23a and 23b gave, after gradient elution flash chromatography [hexane-diethyl ether ($3: 1 \mathrm{v} / \mathrm{v}$) followed by hexane-diethyl ether ($2: 1 \mathrm{v} / \mathrm{v}$)], initially the less polar title compound 31 ($663.3 \mathrm{mg}, 43 \%$) as a colourless oil, followed by compound 30 ($535.4 \mathrm{mg}, 34 \%$) as a white solid. Compound 30; m.p. $59-61^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.36[$ hexane-ethyl acetate $(3: 1 \mathrm{v} / \mathrm{v})$] (Found: $\mathrm{C}, 73.8 ; \mathrm{H}, 6.5 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6}$ requires $\mathrm{C}, 73.75 ; \mathrm{H}, 6.6 \%$); $[\alpha]_{\mathrm{D}}^{24}$ +4.8 (c 2.7); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1738(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $2.33(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.41(1 \mathrm{H}, \mathrm{t}, J 4.0), 3.47-3.54(2 \mathrm{H}, \mathrm{m}), 3.58$ ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 4.8), $3.67(1 \mathrm{H}, \mathrm{t}, J 8.7), 3.76(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and 5.0$), 4.41$ and $4.75\left(2 \mathrm{H}, \mathrm{ABq}, J 11.1, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.50$ and $4.56\left(2 \mathrm{H}, \mathrm{ABq}, J 12.3, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.53$ and $4.60(2 \mathrm{H}, \mathrm{ABq}, J$ $\left.11.7, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.50(1 \mathrm{H}, \mathrm{t}, J 4.6,3-\mathrm{H})$ and $7.19-7.35(15 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{Ph}$); m/z (EI) 397 ($\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 7 \%$), 291 ($\mathrm{M}^{+}-$ $\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 29$) and 91 (100).
Compound 31; $R_{\mathrm{f}} 0.52$ [hexane-ethyl acetate ($3: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, $74.1 ; \mathrm{H}, 6.8 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6}$ requires C, $73.75 ; \mathrm{H}, 6.6 \%$); $[\alpha]_{\mathrm{D}}^{24}+14.3(c 2.0) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1747(\mathrm{C}=0) ; \delta_{\mathrm{H}} 2.16(3 \mathrm{H}, \mathrm{s}$, Ac), $3.29(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, [$3.21(1 \mathrm{H}, \mathrm{d}, J 3.4$) and $3.27(1 \mathrm{H}, \mathrm{t}, J$ 3.1), $\mathrm{H}-1$ and $\mathrm{H}-2$], 3.56 (1 H , dd, $J 9.3$ and $5.4,7-\mathrm{H}$), $3.63(1 \mathrm{H}$, $\mathrm{dd}, J 9.3$ and $\left.3.6,7^{\prime}-\mathrm{H}\right), 3.67-3.78(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 4.38$ and $4.51\left(2 \mathrm{H}, \mathrm{ABq}, J 12.1, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.41$ and $4.83(2 \mathrm{H}, \mathrm{ABq}$, $\left.J 11.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.53$ and $4.68\left(2 \mathrm{H}, \mathrm{ABq}, J 11.2, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 5.84 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}$), 6.98-7.37 ($15 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$); m / z (EI) $397\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 7 \%\right), 291\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 72\right)$ and 91 (100).
(1S,2S,3S,4R,5R,6R)-3,4-Di-O-benzyl-5-benzyloxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-triol 32.-Method A. A solution of the epoxy acetate $30(111.4 \mathrm{mg}, 0.228 \mathrm{mmol})$, and a catalytic amount of anhydrous potassium carbonate in dry methanol (5 cm^{3}) was stirred at room temp. for 12 h . Concentration of the solvent, followed by flash chromatography [hexane-diethyl ether ($2: 3 \mathrm{v} / \mathrm{v}$)] gave the title compound $32(95.8 \mathrm{mg}, 94 \%)$ as a white solid, m.p. $78-80^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.36$ [hexane-diethyl ether ($1: 2$ v / v)] (Found: C, 74.9; H, 7.0. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}$ requires C, 75.3; H, 6.8%); $[\alpha]_{\mathrm{D}}^{23}+42.1(c 0.8) ; v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 2.29-$ $2.34(1 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{brd}, J 6.0), 3.38(1 \mathrm{H}, \mathrm{t}, J 4.0), 3.47-3.58$ ($3 \mathrm{H}, \mathrm{m}$), 3.62-3.74 ($2 \mathrm{H}, \mathrm{m}$), 3.66 ($1 \mathrm{H}, \mathrm{t}, J 8.9$), 3.71 ($1 \mathrm{H}, \mathrm{dd}, J$ 8.9 and 5.6), $4.27(1 \mathrm{H}, \mathrm{m}), 4.48$ and $4.55(2 \mathrm{H}, \mathrm{ABq}, J 12.1), 4.59$ and $4.62(2 \mathrm{H}, \mathrm{ABq}, J 11.9), 4.43$ and $4.71(2 \mathrm{H}, \mathrm{ABq}, J 11.3)$ and 7.20-7.35 ($15 \mathrm{H}, \mathrm{m}$); m / z (EI) $355\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 19 \%\right), 249$ $\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 9\right.$) and 91 (100).

Method B. To a solution of the epoxide $35(15.2 \mathrm{mg}, 0.027$ $\mathrm{mmol})$ in dry THF ($2 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}_{4} \mathrm{NF}\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in THF, $0.033 \mathrm{~cm}^{3}, 0.03 \mathrm{mmol}$). The mixture was stirred at room temp. for 2 h . Concentration of the solvent, followed by flash chromatography [hexane-diethyl ether ($1: 2$ $\mathrm{v} / \mathrm{v})$] afforded the title compound $32(11.1 \mathrm{mg}, 92 \%)$ as a white solid.

Method C. Similar MCPBA epoxidation of the allyl alcohol $19(283.8 \mathrm{mg}, 0.660 \mathrm{mmol})$ as in the preparation of the oxiranes 23a and 23b gave, after flash chromatography [hexane-diethyl ether ($2: 3 \mathrm{v} / \mathrm{v}$)], the title compound $32(279.9 \mathrm{mg}, 95 \%$) as a white solid.
(1R,2S,3S,4R,5R,6S)-3,4-Di-O-benzyl-5-benzyloxymethyl-7-oxabicyclo[4.1.0]heptane-2,3,4-triol 33.-Method A. A solution of the epoxy acetate $31(91.4 \mathrm{mg}, 0.187 \mathrm{mmol})$, and a catalytic amount of anhydrous potassium carbonate in dry methanol (5 cm^{3}) was stirred at room temp. for 4 h . Concentration of the solvent followed by flash chromatography [hexane-diethyl ether ($3: 2 \mathrm{v} / \mathrm{v}$)] gave the title compound $33(76.1 \mathrm{mg}, 91 \%)$ as a
white solid, m.p. $50-52^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.36$ [hexane-diethyl ether (1:1)] (Found: C, $75.25 ; \mathrm{H}, 6.6 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 75.3 ; \mathrm{H}, 6.8 \%$); $[\alpha]_{\mathrm{D}}^{25}+30.2(c \quad 1.2) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 2.25(1 \mathrm{H}$, ddd, $J 8.8,5.4$ and 3.6), $2.80(1 \mathrm{H}, \mathrm{d}, J 2.8), 3.19(1 \mathrm{H}, \mathrm{d}, J 3.5)$, $3.33(1 \mathrm{H}, \mathrm{t}, J 3.1), 3.51(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 5.6), $3.56(1 \mathrm{H}, \mathrm{d}, J 3.5)$, $3.62(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 3.2$), 3.71(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 8.6), $4.40-$ $4.45(1 \mathrm{H}, \mathrm{m}), 4.40$ and $4.48(2 \mathrm{H}, \mathrm{ABq}, J 12.2), 4.42$ and 4.81 (2 $\mathrm{H}, \mathrm{ABq}, J 11.1$), 4.62 and $4.71(2 \mathrm{H}, \mathrm{ABq}, J 11.5)$ and $7.18-7.35$ ($15 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{EI}) 355\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 13 \%\right.$) and 91 (100).

Method B. To a solution of the epoxide $36(12.1 \mathrm{mg}, 0.0216$ mmol) in dry THF ($2 \mathrm{~cm}^{3}$) was added tetrabutylammonium fluoride ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF; $0.026 \mathrm{~cm}^{3}, 0.024 \mathrm{mmol}$). The mixture was stirred at room temp. for 3 h , then concentration of the solvent, followed by flash chromatography [hexane-diethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$)] afforded the title compound 33 $(9.1 \mathrm{mg}, 94 \%)$ as a white solid.
(1R,2S,3R,4S)-2,3-Di-O-benzyl-4-benzyloxymethyl-1-(O-tert-butyldimethylsilyl)cyclohex-5-ene-1,2,3-triol 34.-Similar silylation of the allylic alcohol $19(247.4 \mathrm{mg}, 0.575 \mathrm{mmol})$ as for the preparation of compound 27 afforded, after flash chromatography [hexane-diethyl ether ($12: 1 \mathrm{v} / \mathrm{v}$)], the title compound 34 ($302.2 \mathrm{mg}, 96 \%$) as a colourless oil; $R_{\mathrm{f}} 0.42$ [hexane-diethyl ether ($10: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 74.9; H, 8.2. $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 8.1 \%$); $[\alpha]_{\mathrm{D}}^{22}-1.3$ (c 1.5); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3000-3100$ (aromatic C-H); $\delta_{\mathrm{H}} 0.06(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.91 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), $2.46(1 \mathrm{H}, \mathrm{m}), 3.42$ (1 H , dd, $J 8.93$ and 6.6), $3.56-3.63(2 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{dd}, J$ 8.45 and 7.0$), 4.41-4.44(3 \mathrm{H}, \mathrm{m}), 4.52$ and $4.80(2 \mathrm{H}, \mathrm{ABq}, J$ $11.5), 4.63$ and $4.73(2 \mathrm{H}, \mathrm{ABq}, J 12.1)$, $5.71(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.0)$ and $7.21-7.36(15 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 453\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 2 \%\right), 438$ $\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}, 3\right)$ and 91 (100).
(1R,2R,3S,4R,5R,6R)- and (1S,2R,3S,4R,5R,6S)-3,4-Di-O-benzyl-5-benzyloxymethyl-2-O-tert-butyldimethylsilyl-7-oxa-bicyclo[4.1.0]heptane-2,3,4-triol 35 and 36.-Similar MCPBA epoxidation of the alkene $34(58.6 \mathrm{mg}, 0.107 \mathrm{mmol})$ as in the preparation of the oxiranes 23a and 23b gave, after flash chromatography [hexane-diethyl ether ($8: 1 \mathrm{v} / \mathrm{v}$) followed by hexane-diethyl ether ($5: 1 \mathrm{v} / \mathrm{v}$)], initially the title compound 36 ($30.8 \mathrm{mg}, 51.2 \%$), followed by compound 35 ($9.6 \mathrm{mg}, 15.9 \%$), both as colourless oils. Compound $35 ; R_{\mathrm{f}} 0.24$ [hexane-diethyl ether ($5: 1 \mathrm{v} / \mathrm{v}$)] (Found: $\mathrm{C}, 72.3 ; \mathrm{H}, 8.0 . \mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$ requires C , $72.8 ; \mathrm{H}, 7.9 \%) ;[\alpha]_{\mathrm{D}}^{26}-1.9$ (c 1.1); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3000-3100$ (aromatic C-H); $\delta_{\mathrm{H}} 0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.00$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $2.33(1 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{t}, J 3.8), 3.40-3.55(3 \mathrm{H}, \mathrm{m})$, 3.64-3.76 $(2 \mathrm{H}, \mathrm{m}), 4.40$ and $4.59(2 \mathrm{H}, \mathrm{ABq}, J 11.6), 4.40(1 \mathrm{H}, \mathrm{t}$, $J 4.2)$, 4.47 and $4.59(2 \mathrm{H}, \mathrm{ABq}, J 11.9), 4.53$ and $4.69(2 \mathrm{H}, \mathrm{ABq}$, $J 12.2$) and 7.15-7.35 ($15 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{EI}) 469\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right.$, 11%) and 91 (100).

Compound 36; $\mathrm{R}_{\mathrm{f}} 0.36$ [hexane-diethyl ether ($7: 1 \mathrm{v} / \mathrm{v}$)] (Found: C, 72.5; H, 7.9. $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 7.9 \%$); $[\alpha]_{\mathrm{D}}^{25}+11(c 1.1) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3000-3100$ (aromatic C-H); $\delta_{\mathrm{H}} 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.26$
($1 \mathrm{H}, \mathrm{m}$), 3.15 ($1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 3.0), $3.20(1 \mathrm{H}, \mathrm{d}, J 3.5$), 3.47 (1 $\mathrm{H}, \mathrm{dd}, J 9.3$ and 6.4), $3.52-3.61(2 \mathrm{H}, \mathrm{m}), 3.77(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 8.8), 4.35 and $4.45(2 \mathrm{H}, \mathrm{ABq}, J 12), 4.43$ and $4.80(2 \mathrm{H}, \mathrm{ABq}, J$ $11.3), 4.50(1 \mathrm{H}, \mathrm{t}, J 2.6), 4.67(2 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $7.17-7.36(15 \mathrm{H}, \mathrm{m})$; $m / z(E I) 469\left(M^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 11 \%\right)$ and 91 (100).

Acknowledgements

We thank the Croucher Foundation for financial support.

References

1 For Part 3, see T. K. M. Shing, Y.-X. Cui and Y. Tang, J. Chem. Soc., Chem. Commun., 1991, 756; Tetrahedron, 1992, 48, 2349.
2 S. Atsumi, K. Umezawa, H. Iinuma, H. Naganawa, H. Nakamura, Y. Iitaka and T. Takeucki, J. Antibiotics., 1990, 43, 49.

3 S. Atsumi, H. Iinuma, C. Nosaka and K. Umezawa, J. Antibiotics., 1990, 43, 1579.
4 K. Tatsuta, Y. Niwata, K. Umezawa, K. Toshima and M. Nakata, Tetrahedron Lett., 1990, 31, 1171.
5 K. Tatsuta, Y. Niwata, K. Umezawa, K. Toshima and M. Nakata, Carbohydr. Res., 1991, 222, 189.
6 T. Akiyama, M. Ohnari, H. Shima, S. Ozaki, Synlett., 1991, 831.
7 V. Moritz and P. Vogel, Tetrahedron Lett., 1992, 33, 5343.
8 K. Tatsuta, Y. Niwata, K. Umezawa, K. Toshima and M. Nakata, J. Antibiotics., 1991, 44, 456, 912.

9 T. K. M. Shing and Y. Tang, J. Chem. Soc., Chem. Commun., 1990, 312; Tetrahedron, 1990, 46, 6575.
10 T. K. M. Shing and Y. Tang, J. Chem. Soc., Chem. Commun., 1990, 748; Tetrahedron, 1991, 47, 4571.
11 K. L. Perlman, R. E. Swenson, H. E. Paaren, H. K. Schnoes and H. F. DeLuca, Tetrahedron Lett., 1992, 33, 7663.

12 C. D. Maycock, M. T. Barros, A. G. Santos and L. S. Godinho, Tetrahedron Lett., 1992, 33, 4633.
13 B. M. Johnson and K. P. C. Vollhardt, Synlett., 1990, 209.
14 T. K. M. Shing and V. W.-F. Tai, J. Chem. Soc., Chem. Commun., 1993, 995.
15 D. Mercier, J. Leboul, J. Cléophax and S. D. Gero, Carbohydr. Res., 1971, 20, 299.
16 J. D. Elliott, A. B. Kelson, N. Purcell and R. J. Stoodley, J. Chem Soc., Perkin Trans. 1, 1983, 2441
17 B. M. Kim and K. B. Sharpless, Tetrahedron Lett., 1989, 30, 655; Y. Gao and K. B. Sharpless, J. Am. Chem. Soc., 1988, 110, 7538.

18 For a review on the chemistry of cyclic sulfate, see B. B. Lohray, Synthesis, 1992, 1035.
19 H. Oediger, F. Möller and K. Eiter, Synthesis, 1972, 591.
20 G. F. Cooper, K. E. McCarthy and M. G. Martin, Tetrahedron Lett., 1992, 33, 5895.
21 K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1973, 95, 2697; S. Knapp, A. B. J. Naughton and T. M. Murali Dhar, Tetrahedron Lett., 1992, 33, 1025.
22 J. G. Buchanan, in MTP International Review of Science, Organic chemistry series one, ed. A. O. Aspinall, Vol. 7, University Park Press, U.S.A., 1973, p. 33.
23 O. Mitsunobu, Synthesis, 1981, 1.
24 H. B. Henbest and R. A. L. Wilson, J. Chem. Soc., 1957, 1958.

Paper 4/00423J
Received 24th January 1994
Accepted 14th March 1994

[^0]: * The reaction was unsuccessful when THF or toluene was used.

